Traffic Surveillance by Wireless Sensor Networks: Final Report for PATH TO 5301
نویسندگان
چکیده
Traffic surveillance systems provide the data used by Intelligent Transportation Systems (ITS). The disadvantages of inductive loop detectors have led to the search for a reliable and cost-effective alternative system. This report summarizes a three-year research project in the prototype design, analysis and performance of wireless sensor networks for traffic surveillance, using both acoustic and magnetic sensors. A robust real-time vehicle detection algorithm for both signals is developed. Magnetic sensors turned out to be superior, achieving detection rates above 97% in the field, and led to the abandonment of further research using acoustic sensors. Vehicle classification and reidentification schemes for low-cost, low-power platforms with very limited computation resources are developed and tested. The vehicle classification algorithms require orders of magnitude fewer computation resources while achieving correct classification rates comparable to the best of all published vehicle classification schemes in tests with a large database, including 800 trucks. The algorithm for vehicle reidentification is tested on a limited left-turn reidentification experiment. The result is encouraging, but much more work is needed. The flexibility, easy of installation, remote maintenance, low cost and high accuracy of wireless sensor networks will lead to their ubiquitous deployment and thereby provide the fine-grained vehicle detection required to implement effective traffic monitoring and control. Wireless sensor networks are ‘future proof’. Additional modalities, such as temperature, moisture, and pollutant sensing, can be incorporated in the same node or in separate nodes to monitor other aspects of the traffic system. The wireless communication network can be used to communicate with vehicles to provide another path to ‘vehicleinfrastructure integration’. This report is a modified version of the doctoral dissertation of Sing-Yiu Cheung.
منابع مشابه
A Priority-based Routing Algorithm for Underwater Wireless Sensor Networks (UWSNs)
Advances in low-power electronics design and wireless communication have enabled the development of low cost, low power micro-sensor nodes. These sensor nodes are capable of sensing, processing and forwarding which have many applications such as underwater networks. In underwater wireless sensor networks (UWSNs) applications, sensors which are placed in underwater environments and predicted ena...
متن کاملImproving Energy Consumption by Using Cluster Based Routing Algorithm in Wireless Sensor Networks
Multi-path is favorite alternative for sensor networks, as it provides an easy mechanism to distributetraffic, as well as considerate fault tolerance. In this paper, a new clustering based multi path routingprotocol namely ECRR (Energy efficient Cluster based Routing algorithm for improving Reliability) isproposed, which is a new routing algorithm and guarantees the achievement to required QoS ...
متن کامل3D Path Planning Algorithm for Mobile Anchor-Assisted Positioning in Wireless Sensor Networks
Positioning service is one of Wireless Sensor Networks’ (WSNs) fundamental services. The accurate position of the sensor nodes plays a vital role in many applications of WSNs. In this paper, a 3D positioning algorithm is being proposed, using mobile anchor node to assist sensor nodes in order to estimate their positions in a 3D geospatial environment. However, mobile anchor node’s 3D path optim...
متن کاملEvaluation of an Intrusion Detection System for Routing Attacks in Wireless Self-organised Networks
Wireless Sensor Networks (WSNs) arebecoming increasingly popular, and very useful in militaryapplications and environmental monitoring. However,security is a major challenge for WSNs because they areusually setup in unprotected environments. Our goal in thisstudy is to simulate an Intrusion Detection System (IDS)that monitors the WSN and report intrusions accurately andeffectively. We have thus...
متن کاملQuasi Random Deployment Strategy for Reliable Communication Backbones in Wireless Sensor Networks
Topology construction and topology maintenance are significant sub-problems of topology control. Spanning tree based algorithms for topology control are basically transmission range based type construction algorithms. The construction of an effective backbone, however, is indirectly related to the placement of nodes. Also, the dependence of network reliability on the communication path undertak...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007